Know more about baffle plates

What is heat exchanger baffle?

A heat exchanger baffle is a plate or barrier that is inserted into a heat exchanger to enhance heat transfer efficiency. The primary function of a baffle is to direct the flow of fluid inside the heat exchanger in a specific pattern, such as cross-flow or counter-flow, to maximize heat transfer.

 

Baffles are commonly used in shell and tube heat exchangers, which consist of a bundle of tubes enclosed in a shell. The baffles are placed inside the shell, perpendicular to the tube bundle, and divide the shell into several chambers. The fluid flows through the tubes and is directed by the baffles through each chamber, which increases the time the fluid spends in contact with the tube surface, thereby enhancing heat transfer efficiency.

 

 

 

The types of baffle plates

The design and placement of baffles in a heat exchanger depend on the specific application requirements, including the type of fluid being heated or cooled, the flow rate, temperature, and pressure, and the desired heat transfer rate. The size, shape, and thickness of the baffles may also vary depending on the application. The baffle plate is installed on the shell side, which can not only improve heat transfer efficiency but also play a role in supporting the tube bundle. There are two types of baffles: arched and disc-shaped. Arched baffles are available in three types: single arched, double arched, and triple arched.

baffle plates

 

 

What is the function of a baffle?

1. Extend the flow channel length of the shell side medium, increase the flow velocity between tubes, increase the degree of turbulence, and achieve the goal of improving the heat transfer efficiency of the heat exchanger.

 

2. Setting baffle plates has a certain supporting effect on the heat exchange tubes of horizontal heat exchangers. When the heat exchange tube is too long and the pressure stress borne by the tube is too high, increasing the number of baffle plates and reducing the spacing between baffle plates while meeting the allowable pressure drop of the heat exchanger tube side can play a certain role in alleviating the stress situation of the heat exchange tube and preventing fluid flow induced vibration.

 

3. Setting baffle plates is beneficial for the installation of heat exchange tubes.

baffles

 

 

 

Heat exchange baffles can be made of various materials, such as stainless steel baffle plates, carbon steel baffle plates, or titanium baffle plates, depending on the corrosive or erosive nature of the fluid being processed. In some cases, baffles may also have holes or slots to allow for more fluid flow and heat transfer.

 

Wuxi Changrun has provided high-quality baffle plate, tube sheets, nozzles, flanges, and customized forgings for heat exchangers, boilers, pressure vessels, etc. to many well-known petrochemical enterprises at home and abroad. Our customers include PetroChina, Sinopec, Chevron, Bayer, Shell, BASF, etc. Send your drawings to sales@wuxichangrun.com We will provide you with the best quotation and the highest quality products.

baffles

 

The Testing methods of tube sheet

What are the tube sheet inspection and testing methods?

Tube sheet inspection and testing methods are used to ensure the integrity and safety of tube sheets, which are components used in heat exchangers and other types of equipment. There are several methods used for tube sheet inspection and testing, including:

 

Visual Inspection

This is the simplest method of tube sheet inspection, which involves a visual examination of the tube sheet surface for any visible cracks, corrosion, erosion or other signs of damage.

 

Dye Penetrant Test (PT)

This method involves applying a dye penetrant to the surface of the tube sheet and then wiping off the excess. The penetrant is then drawn into any cracks or other surface defects by capillary action. A developer is applied, which draws the penetrant out of the cracks and makes them visible.

 

Magnetic Particle Test (MT)

This method involves applying a magnetic field to the tube sheet and then applying ferromagnetic particles to the surface. Any surface cracks or defects will cause the magnetic field to be distorted, making the particles cluster at the location of the defect, which can then be visually detected.

 

Ultrasonic Testing (UT)

This method uses high-frequency sound waves to detect defects in the tube sheet. A probe is placed on the surface of the tube sheet, which emits sound waves that travel through the material. Any defects in the material will cause some of the sound waves to be reflected back to the probe, which can be detected and analyzed.

 

Eddy Current Testing (ECT)

This method involves passing an alternating electrical current through a coil, which induces eddy currents in the tube sheet. Any defects in the material will cause changes in the eddy currents, which can be detected and analyzed.

 

These methods can be used individually or in combination to provide a comprehensive inspection and testing of tube sheets. The choice of method(s) used will depend on the type of equipment, the material of the tube sheet, and the level of sensitivity required for defect detection.

 

Wuxi Changrun has provided high-quality tube sheets, nozzles, flanges, and customized forgings for heat exchangers, boilers, pressure vessels, etc. to many well-known petrochemical enterprises at home and abroad. Our customers include PetroChina, Sinopec, Chevron, Bayer, Shell, BASF, etc. Send your drawings to sales@wuxichangrun.com We will provide you with the best quotation and the highest quality products.

 

tube sheet processing

 

tube sheet workshop